TECHNOLOGIETAG LEICHTBAU REGIONAL

2021 NOVEMBER 25TH

DESIGN OPTIMIZATION ENABLED BY ADVANCED SIMULATION METHODS

DR. JAN-MARTIN KAISER ROBERT BOSCH GMBH, RENNINGEN

- ▶ Bosch and Bosch Research
- ► Motivation and Goal
- ► Virtual testing concept
- ► Validation example
- ► Conclusion and Outlook

Bosch Research Campus, Renningen

- ▶ Bosch and Bosch Research
- ► Motivation and Goal
- ► Virtual testing concept
- ► Validation example
- ► Conclusion and Outlook

Bosch Research Campus, Renningen

Business Sectors in 2020

Mobility Solutions

42.1

billion euros sales revenue **Industrial Technology**

5.1

billion euros sales revenue Energy and Building Technology

5.5

billion euros sales revenue **Consumer Goods**

18.8

billion euros sales revenue

Design Optimization Enabled by Advanced Simulation Methods Bosch Research

In 2020

1,740

highly specialized employees 90%

of associates are scientists

152

PhD students

+11

top research facilities around the globe 1,855

invention reports

74% resulted in patents

328

mio. €
invested in
Bosch
Research &
Center for
Artificial
Intelligence

Design Optimization Enabled by Advanced Simulation Methods **Bosch Research**

Fields of Innovations

Artificial intelligence research

Chemical energy conversion

Electrified mobility and systems

Healthcare solutions

Sustainability for resource and energy efficiency

Production systems

Information and communication technologies

IoT @ life

AI-enabled fully autonomous systems

Modeling, simulation, optimization & new materials

New business

Smart sensor & hardware systems

Design Optimization Enabled by Advanced Simulation Methods Our Research Group

Increase pace in product development by virtual engineering of polymer components

- ▶ Bosch and Bosch Research
- ► Motivation and Goal
- ► Virtual testing concept
- ► Validation example
- ► Conclusion and Outlook

Bosch Research Campus, Renningen

Motivation and Goal

Optimal design enable by an efficient simulation-based performance evaluation

Quasi-static Deformation

Processing

Model Parameter Identification | QS

Structure Simulation

Reliability Assessment

~1 month per material 🗥

Goal: replace experimental quasi-static testing

Long-Term Creep / Relaxation

Processing

Model Parameter Identification | Creep

Structure Simulation

Reliability Assessment

Goal: replace experimental creep testing

Fatigue Lifetime Assessment

Processing

Model Parameter Identification | QS

Structure Simulation

Model Parameter Identification | Fatigue

Reliability Assessment

~1 month per material /

Effort: ~4-6 months per material /

Goal: replace experimental quasi-static and fatigue testing

- ▶ Bosch and Bosch Research
- ► Motivation and Goal
- **▶** Virtual testing concept
- ► Validation example
- ► Conclusion and Outlook

Bosch Research Campus, Renningen

Design Optimization Enabled by Advanced Simulation Methods **Simulation Concept**

Representative microstructure + efficient problem solving → Time effort reduction from months to days

QS: Quasi-static
CT: Computed Tomography
FO: Fiber Orientation

Design Optimization Enabled by Advanced Simulation Methods Representative Material Microstructure Descriptors

Representative microstructure descriptors generation

Design Optimization Enabled by Advanced Simulation Methods **Efficient Problem Solving**

Conforming FE Mesh

- Fiber geometry and periodicity requirements due to periodic boundary conditions lead to
 - complex meshing procedures
 - ▶ and low element quality

CPU Computation

- Central processing unit (CPU)
 - ▶ 4 cores (or more)
 - good for serial processing
 - example: 256³ voxel with 4 CPUs¹⁾
 - total time: 580 s

Pixel Based Voxel Mesh

- Fiber geometry simplified by non-conforming voxel mesh
- Periodicity inherent in method

GPU Computation

- Graphics processing unit
 - ► 640 cores (or even more)
 - good for parallel processing
 - example: 256³ voxel with 640 GPUs²)
 - total time: 100 s

Efficient problem solving within minutes

- ▶ Bosch and Bosch Research
- ► Motivation and Goal
- ► Virtual testing concept
- **► Validation example**
- ► Conclusion and Outlook

Bosch Research Campus, Renningen

Design Optimization Enabled by Advanced Simulation Methods Validation Example

Good prediction of stress - strain behavior and of failure

Validation Example

Very good prediction quality with anisotropic approach | Similar results based on virtual testing and exp. data

- ▶ Bosch and Bosch Research
- ► Motivation and Goal
- ► Simulation Concepts
- ► Validation example
- **►** Conclusion and Outlook

Bosch Research Campus, Renningen

Design Optimization Enabled by Advanced Simulation Methods Conclusion and Outlook

Conclusion

- ► Today's engineering simulation tasks highly relay on cost and time intensive experimental material data for model parameter identification
- Presented approach enables efficient generation of material data
- Synthetic generation of material data empowers Bosch's plastic simulation experts

What's next?

- Extension of concept for
 - ▶ long term loading: creep/relaxation and fatigue
 - Investigate application of AI/ML based methods for intelligent interpolation
 - ► Combine synthetic & experimental material data, as well as AI/ML methods within virtual material lab
- Enable metamodeling of simulation chain for efficient application in optimization cycle

Bosch Research THANK YOU FOR YOUR ATTENTION. STILL CURIOUS? CHECK US OUT ONLINE.

Scan the QR-Code or visit us on:

bosch.com/research

