

Module Number: 33001 Module Name: Project / Soft Skills

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Jürgen Krapp
Modul Type	Mandatory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	4
Offered	Winter Semester, Summer Semester
Credits	5 CP
Workload Class	90 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module **Objectives**

General

The student can organize and structure solutions to a particular problem. The students are able to determine fundamental data concerning signal power and noise by evaluation. They can use and perform basic measurements.

Professional Competence

The laboratory work enables students to gain practical experience, as they are able to carry out experiments and create measurement set-ups etc. on their own responsibility or in small teams.

Special Methods Competence

Die Studierenden können selbstständig neue Themengebiete erarbeiten. Informationen bewerten, praktische Schlussfolgerungen ziehen, neue Lösungen entwickeln und dabei sowohl gesellschaftliche/ soziale als auch ökologische und ökonomische Aspekte berücksichtigen.

Interdisciplinary Competence

Es werden die mit dem zivilgesellschaftlichen Engagement verbundenen Ziele, wie die ganzheitliche Bildung der Studierenden zu fördern, erreicht.

Course Content

Literature

SPO-Version: 32

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33101	Projects / Soft Skills	Prof. Dr. Jürgen Krapp	L	4	
	<u></u>	<u> </u>			L

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33101	PLS, PLR	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 22.03.2023, Fritz

1 V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLP Project PPR Internship PLM Oral Exam PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

SPO-Version: 32

Module Number: 33002 Module Name: Interferometry

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Rainer Börret
Modul Type	Mandatory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	1
Offered	Winter Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	33035 Fundamental Optics
Use in other SG	none
Language	English

Module Objectives

Objectives

General

The student can organize and structure solutions to a particular problem. The students are able to determine fundamental data concerning signal power and noise by evaluation. They can use and perform basic measurements.

Professional Competence

Students will be able to apply and perform the basic concepts and applications of inferferometry and optical measurement techniques. They will be able to interpret and discuss the results as well as alternative methods and solutions.

The Students are able to choose and specify suitable interferometric setups for different applications, choose and specify suitable light sources, sensors and components for interferometric setups and applications and design an interferometric setup for different applications by means of the learned methods and information.

They can specify and select the principles of fringe analysis and the appropriate assessment techniques.

They are able to select a suitable calibration technique to qualify an interferometer and are able to specify the range, resolution and accuracy of an interferometric setup.

They are able to apply the methods listed above in the lab and analyze and review critical the results

Special Methods Competence

They are enabled to systematically select the suitable metrology setup for various measurement problems. They are able to calibrate an interferomter and design and execute a process to define the Capability of aMeasurement System

Interdisciplinary Competence

Students can discuss, debate and work in groups about specific problems and about the best solutions and applications related to a particular measurement problem.

Course Content Lecture:

- Basic principles of interference
- Interferometers
- Detection techniques and algorithms
- Calibration techniques
- Accuracy and error sources
- Testing the quality of optical materials
- Examples for Application of Interferometry
- Testing the geometry of optical components

Literature

Hand-out, detailed manuscript with exercises

- Dörband, Müller, Gross: "Handbook of Optical Systems, Vol. 5"
- Hecht "Optics" (Fundamentals)
- Malacara "Optical Shop Testing"

Included Courses (LV)

-

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33102	Interferometry	Prof. Dr. Rainer Börret	V, L	4	5

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33102	PLM (20 Minutes)	50 %	
	PLP	50 %	

PLR Presentation PLL Lab Work

PLE Draft/Design PLF Portfolio

PPR Internship

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

2 PLK Written Exams

PLM Oral Exam

PLS Term Paper/Research Report

Last Update: 22.03.2023, Fritz; 26.09.2023 R.Boerret

1 V Lecture L Lab S Seminar PR Internship EX Experiment X E Excursion Ü Practice P Project K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32

PLP Project

ent X Not Fixed

PLT Study Diary PMC Multiple Choice PLC Multimedia-Based Examination (E-Exam)

PLA Practical Work Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33001 Module Name: Project / Soft Skills

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Jürgen Krapp
Modul Type	Compulsory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	1
Offered	Winter Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module

Objectives

Professional Competence

The students can describe and use their knowledge of fiber optic communication systems, the structure and properties of the corresponding components. Students will be able to obtain basic data about signal power and noise by evaluation.

The students are able to expand their knowledge and develop new consolidating insights. They are able to answer, evaluate and develop questions on the individual topics.

Special Methods Competence

Students can analyze literature and distinguish between relevant and irrelevant information.

Interdisciplinary Competence The student

- is able to understand and handle complex problems and experiments
- has an increased ability to abstract thinking

Course Content STRUCTURE AND LIGHT PROPAGATION IN FIBERS, FIBER ATTENUATION, FIBER DISPERSION, FIBER OPTIC SOURCES, FIBER COUPLING; OPTICAL AMPLIFIERS WITH ERBIUM DOPED FIBERS, PHOTODETECTORS; RECEIVERS

Literature

SPO-Version: 32

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33103	Photonics Communications Engineering	Prof. Dr. Jürgen Krapp	V, E	6	5
		<u> </u>			

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33103	PLK	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 22.03.2023, Fritz

1 V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLP Project PPR Internship PLM Oral Exam PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33004 **Module Name: Quantum Optics**

SPO-Version: 32

Degree Program	Applied Photonics
Module Manager	Prof. Dr. A. Harth
Modul Type	Mandatory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	1
Offered	Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	Mathematics, physics of technical bachelor degree
Use in other SG	none
Language	English

Module

Professional Competence

Objectives

Students are able to describe and understand quantum optical phenomena mathematically and to interpret the theoretical predictions in terms of experimental relevance.

Special Methods Competence

The students learn to apply quantum physical principles to technical applications.

Interdisciplinary Competence

The students solve exercises and laboratory tasks alone and in groups and present their results.

Course Content	• •	Introduction: Classical optics Semi-classical: Radiative transitions in atoms Photon statistics Entanglement Quantum Computer

Literature Tipler: Physik; Mark Fox: Quantum Optics

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33201	Quantum Optics	Prof. Dr. A. Harth	V, Ü, L	4	5
L	ļ	1			

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33201	PLK (45 Minutes)	80 %	
33201	PLL	20 %	

Requirements for Admission to the Module Exam Passed Preexam

Further Study-Related Feedback None

Comments:

Last Update: 04.04.2023, AnHa

1 V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLM Oral Exam PLP Project PPR Internship PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

SPO-Version: 32

Module Number: 33005 Module Name: Project / Soft Skills

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Andreas Heinrich
Modul Type	Mandatory Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	1
Offered	Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module

Objectives

Professional Competence

Students can understand wave optics. They can understand phenomena that describe the interaction of light waves with material. This will illustrate the difference between beam and wave optics. Students will be able to identify the limits of beam optics and describe improved optical effects using wave optics.

Special Methods Competence

Students are able to analyse literature. They can differ between relevant and non-relevant information and evaluate and judge optical phenomena.

Interdisciplinary Competence

Students are able to discuss the advantages and disadvantages of different approaches in a team. They can express themselves scientifically and complete their knowledge.

- **Course Content** basics of wave optics, light interference, light diffraction / inverse diffraction, light polarization, light scattering
- Literature Monographien und Originalartikel B. E.A. Saleh, M.V. Teich: Fundamentals of Photonics

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33202	Physical Optics	Prof. Dr. Andreas Heinrich	V	4	5
	ļ	<u> </u>			

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
1	PLK (60 Minutes)	100%	Allowed Exam Materials: none

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

1 V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLP Project PPR Internship PLM Oral Exam PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Hochschule Aalen	Faculty Optics and Mechatronics	Module Description
	Degree Program Applied Photonics (Master)	SPO 31
	Module Coordinator Prof. Dr. Andreas Heinrich	

Module Name Illumin		nation			Module No : 33041			
СР	SHW ¹	SHW ¹ Workload		Contact Self-Study Begin Time		Begin	Sem	Duration
5	4	150		<mark>56</mark> 0 h	10 90 h	☐ Winter Semester ⊠ Summer Semester	2	 ☑ 1 Semester ☑ 2 Semesters Semesters
Degree Objective			Module Type (PM/WPM/WM)		Division (Upper/Lower)	Incorporated in Degree Programs		
Master of Science		е	WM - Elective Module HS - Hauptstudium		Photonics			
Study Form			⊠ Lecture ☐ Tutorial ☐ Lab ⊠ Self-Study ☐Seminar ☐Assignment ☐ Projekt Work ☐ Other: Paper, Report			y		
Prerequisites				no				

Supportin	Supporting Modules / Courses								
Course No.	Title of the Module / Course		Lecturer	Туре	SHW ¹	СР	Sem	Module Exam Type/ Length/ Graded	
33241	Illumination		Dr. Johannes Eisenmenger	V	4	5	2	PLK 90	
	Module Type Divis (PM/WPM/WM)		ion (Upper/Lower)	Incorporated in Degree Programs		benotet			
	WM - Elective Me H		S - Hauptstudium	Photonics					
Allowed Exam Materials n		none							

Learning Goals / Competences

Professional competence (professional knowledge and skills, professional expertise):

Students can understand the lighting in a basic way. They can describe their knowledge of phenomena that describe the interaction of light waves in optical systems. This allows them to represent the difference between beam and wave optics. This will allow students to see the limits and describe improved optical effects. In addition, students can apply simulation software and transfer their understanding of lighting system design. Special (methods) skills, if applicable:

Students are able to analyse literature and distinguish between relevant and irrelevant information. They can evaluate and judge optical phenomena.

Over professional competence (social skills und ability to work independently):

They can discuss and evaluate the advantages and disadvantages of different approaches in a team. They can express themselves scientifically and apply their knowledge.

Competence Area	ompetence Area Heavy Medium Light						
Technical Competence	\boxtimes						
Methods Competence		\square					
Social Competence		\square					
Course Contents							
The students can choose out of	this topics:						
1 Introduction							
2 Radiometry and apertur							
3 Illumination in Imaging S							
4 Illumination in Nonimagi							
5 Spectoradiometric Quar							
6 Radiometric and Photor	netric quantities						
7 Color							
8 Scattering of Light	f Matariala						
9 Illumination Properties of10 Sources of Illumination	n Materials						
11 Coherence							
12 Fibers, Lightpipes and L	iathauides						
13 Classical Illumination De							
14 Uniform Illumination	ssight						
	Source Modeling Methods						
16 Nonimaging Compound							
001	Displays						
18 Characterizing Illuminat	on Systems						
19 Software Modelling	Software Modelling						
20 Architectural Illumination	Architectural Illumination						
21 Light and Visual Perform	nance						
22 Lighting Design							
23 Illumination in Photogra							
24 Luminaire for Open-Plan	n Office						
25 Daylight Compensation							
26 Exterior Lighting							
27 Parking							
28 Roadway Lighting							
	nt by Illumination in Microso		/				
	hniques for Measurements						
31 Illumination in Particle C	plics						

Language	🗌 German	🛛 English	Spanish 🗌	French
	Chinese	Portuguese	🗌 Russian	Other:
¹ SHW = Semester Hours per Wee	k			

SHW -= Semester Hours per Week

Literature	-
Composition of Final Grade	PLK (100%)
Comments / Other	
Last Updated	14.03.17 Andreas Heinrich

Module Number: 33211 **Module Name: Fourier Optics**

SPO-Version: 32

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Andreas Heinrich
Modul Type	Compulsory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	1
Offered	Winter Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	Mathematics, physics of technical Bachelor degree
Use in other SG	none
Language	English

Module **Objectives**

Professional Competence

Students are able to do Fourier analysis and calculations in the field of optics The students learn to convince their team partners by a scientific discussion to come to a common accepted solution.

Special Methods Competence

The students will get a fundamental understanding Fourier methods techniques in order to apply Fourier Methods to simulate optical Elements for light propagation. Thereby Matalb will be used on order to perform the simulations.

Interdisciplinary Competence

The learning goal of the students' self study is to reach the level of optical knowledge regarding Diffractive optics. Setting up experiments enables the students to transfer their theoretical knowledge and to realize problems to be faced in a practical environment.

Course Content Refraction, reflection, paraxial optical systems, optical devices, polarization, interference

Literature lecture notes with bibliography

Included Courses (LV)

Course Name	Professor	Type ¹	SWS	СР
Fourier Optics	Prof. Dr. Andreas Heinrich	V, L	4	5
	Fourier Optics	Fourier Optics Prof. Dr. Andreas Heinrich	Fourier Optics Prof. Dr. Andreas Heinrich V, L	

¹ V Lecture E Excursion

L Lab S Seminar Ü Practice P Project

K Colloquium

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33216	PLK (60 minutes)	100%	Allowed Exam Materials: none

Requirements for Admission to the Module Exam

Further Study-Related Feedback None

Comments:

Last Update: 27.03.2023, Fritz

Bachelor from SPO 33 (§ 63); Master from SPO 32

	Bachelol Itolii SFO 55 (§ 05), Master Itolii SFO 52					
2	PLK	Written Exams	PLR	Presentation	PLL	Lab Work
	PLS	Term Paper/Research Report	PLE	Draft/Design	PLF	Portfolio
	PLM	Oral Exam	PLP	Project	PPR	Internship
	PLA	Practical Work				
	Bach	elor from SPO 33 (§ 20); Master from	SPO	32		

PLT Study Diary PMC Multiple Choice PLC Multimedia-Based Examination (E-Exam)

Hochschule Aalen	Fakultät Optik und Mechatronik	Modulbeschreibung
	Studiengang Photonics	
	Modulkoordinator Prof. Dr. Andreas Walter	

Modul-Name Advance				ced Microscopy in Life Sciences			Modul-Nr :		
СР	SWS	W	orkload	Kontakt- zeit	Selbst- studium	Angebot Beginn	Sem	Dauer	
5	4	15	0h	60h	90h	⊠ Wintersemester ☐ Sommersemester	1	⊠ 1 Semester □ 2 Semester Semester	
Angestrebter Abschluss			Modultyp Studienabschnitt (PM/WPM/WM)		Einsatz in Studiengängen				
Master of Science			WPM - Wa	hlpflichtmodul		APh			
Form der Wissensvermittlung			⊠ Vorlesung ⊠Übung ⊠Labor ⊠ Selbststudium ⊡Seminar						
Lernziel	Lernziele / Kompetenzen								

Fachkompetenz ("Wissen und Verstehen" und "Fertigkeiten"): Die Studierenden werden ein tiefes technisches, mathematisches und anwendungsbezogenes Wissen Moderner optischer und nicht-optischer Mikroskopiemethoden inklusive derer optischen Grundlagen - von Linsenaberrationen bis hin zur Fourier-Optik und Punktspreizfunktion - erlangen. Die Mikroskopietechniken beinhalten fortgeschrittene Modalitäten wie zum Beispiel die sogenannte Super-Resolution unter dem Abbeschen Diffraction Limit, aber auch nicht-optische Techniken wie die Elektronen-, Röntgen- oder Ionenmikroskopie und ihre physikalischen Prinzipien und biomedizinschen Anwendungen. Zudem werden Aufbau und Bildprozessierung der jeweiligen Techniken behandelt.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstständigkeit"): Die Studierenden lernen, peerreviewed aktuelle Literatur zum Thema Mikroskopieentwicklung zu analysieren und zu durchdringen, einen Überblick in einem Kurzreferat zu präsentieren, und Labor-und Forschungsprojekte in 2 hands-on sessions als Team zu bearbeiten.

Die selbstständige Bearbeitung von speziellen Themen unter Berücksichtigung des bisherigen Fachwissens, Literatur und wissenschaftlichen Methodik bereitet die Studenten auf die Anforderungen der Masterthesis vor.

Ggf. besondere Methodenkompetenz: Die Studierenden optimieren ihre Präsentationstechniken (Vortragsgestaltung) und setzen Methoden zur Informationsgewinnung (Literaturrecherche, -sichtung, - verwaltung) zielgerichtet ein. Sie werden komplexe mathematische und physikalsiche Zusammenhänge auf konkrete Anwendungen in der Mikroskopie übertragen lernen.

Lehrinhalte

- 1. Motivation & Introduction
- 2. Fundamentals of Microscopy
- a. Geometric Optics
- b. Waves
- c. Gaussian Beams
- d. Fourier Optics
- e. Diffraction
- f. Diffraction Limit

- g. OTF & PSF (Optical Transfer Function & Point Spread Function)
- 3. Basics of Cell Biology a. Cell Structure b. Cell Culture
- 4. Light Microscopy
- a. Structure & Path of Light
- b. Abbe's Theory of Image Formation
- c. Methods for Contrast Enhancement
- 5. Fluorescence Microscopy & Confocal Microscopy
- a. Fluorescence & Absorption
- b. Setups
- c. Confocal Microscopy
- 6. Super-Resolution/Single Molecule Microscopy
- a. Structured Illumination Microscopy
- b. STED (Stimulated Emission Depletion)
- c. PALM/STORM (Photoactivated Localization Microscopy/Stochastic Optical Reconstruction Microscopy)
- 7. Microscopy of Thick Tissues
- a. Light Sheet Microscopy
- b. Nonlinear Optics & Two-Photon Microscopy
- 8. Electron and Ion Microscopy
- a. Transmission Electron Microscopy
- b. Scanning Electron Microscopy
- c. Ion Microscopy
- 9. Atomic Force Microscopy
- 10. X-Ray Microscopy

Zugangsvoraussetzung	Vorbereitung Teilnahme Modul: keine Modul: keine Prüfung: keine
----------------------	---

Enthaltene Teilmodule / Lehrveranstaltungen								
Fach- Nr.	Titel des Teilmoduls / Lehrveranstaltung		Lehrende	Art	SWS	СР	Sem	Modul- prüfung Art / Dauer / Benotung
xxxxx	Advanced Microscopy		Walter	V	4	5	1	
	Teilmodultyp (PM/WPM/WM)	St	udienabschnitt	Einsa	tz in Stu	diengä	ngen	
	WPM - Wahlpflichtveranstaltung			APh				PLM 20
Fach- Nr.	Titel des Teilmoduls / Lehrveranstaltung		Lehrende	Art	SWS	СР	Sem	benotet
	Teilmodultyp (PM/WPM/WM)	St	udienabschnitt	Einsa	tz in Stu	diengä	ngen	
Zugelass	Zugelassene Hilfsmittel Formelzettel							

Sprache	🗌 Deutsch 🛛 Englisch 🔲 Spanisch 🗌 Französisch
	Chinesisch Portugiesisch Russisch
Literatur	Literatur zu speziellen Themen der Optischen Mikroskopie, Fourier Optik, Elektronenmikroskopie wird bereitgestellt.
Zusammensetzung der Endnote	100% PLM - Mündliche Prüfung, 20 Minuten Zulassungsvoraussetzung: Kurzreferat
Bemerkungen / Sonstiges	
Letzte Aktualisierung	Andreas Walter, 12.Februar 2024

Module Number: 33216SPO-Version: 32Module Name: Introduction to Diffractive Optics

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Andreas Heinrich
Modul Type	Compulsory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	1
Offered	Winter Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	Mathematics, physics of technical Bachelor degree
Use in other SG	none
Language	English

Module Objectives

Professional Competence

Students are able to do Fourier analysis and calculations in the field of optics The students learn to convince their team partners by a scientific discussion to come to a common accepted solution.

Special Methods Competence

The students will get a fundamental understanding on diffractive elements and are able to apply Fourier methods and other techniques in order to Design Difractive optical Elements for light propagation, Transmittance. Additional knowledge will be obtained on special diffractive elements like Gratings etc.

Interdisciplinary Competence

The learning goal of the students' self study is to reach the level of optical knowledge regarding Diffractive optics. Setting up experiments enables the students to transfer their theoretical knowledge and to realize problems to be faced in a practical environment.

Course Content Refraction, reflection, paraxial optical systems, optical devices, polarization, interference

Literature lecture notes with bibliography

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33216	Introduction to Diffractive Optics	Prof. Dr. Andreas Heinrich	V, L	4	5

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33216	PLK (60 minutes)	100%	Allowed Exam Materials: none

Requirements for Admission to the Module Exam

Further Study-Related Feedback None

Comments:

Last Update: 27.03.2023, Fritz

¹ V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLP Project PPR Internship PLM Oral Exam PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33801 Module Name: Project / Soft Skills

SPO-Version: 32

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Thomas Hellmuth
Modul Type	Mandatory Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	4
Offered	Winter Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	Mathematics, physics of technical bachelor degree
Use in other SG	none
Language	English

Module **Objectives**

Professional Competence

Professional competence (professional knowledge and skills, professional expertise): Students are able to describe and understand non-linear optical laser phenomena mathematically, to interpret the theoretical predictions in terms of experimental relevance, to analyse tolarances and specify non-linear crystals.

Special Methods Competence

The students are able to search specifications and physical properties of non-linear crystals to design non-linear laser devices for industrial applications.

Interdisciplinary Competence

The students simulate, design and validate crystals with the SNLO program. The results are presented by the respective groups.

Course Content Polarization optics, crystal optics, non-linear optics of second and third order

Literature Lecture notes with bibliography

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33104	Non-linear Optics	Prof. Dr. Thomas Hellmuth	V, Ü	4	5
		-			

¹ V Lecture E Excursion

L Lab S Seminar Ü Practice P Project

K Colloquium

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33104	PLK (60 Minutes)	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

Bachelor from SPO 33 (§ 63); Master from SPO 32

	Ducin		0, 0	52
2	PLK	Written Exams	PLR	Pre
	PLS	Term Paper/Research Report	PLE	Dra
	PLM	Oral Exam	PLP	Pro
	PLA	Practical Work		
	Bache	elor from SPO 33 (§ 20); Master from	SPO	32

R Presentation PLL Lab Work E Draft/Design PLF Portfolio P Project PPR Internship

PLT Study Diary PMC Multiple Choice PLC Multimedia-Based Examination (E-Exam)

Module Number: 33802SPO-Version: 32Module Name: Photonics Detectors and Devices

Degree Program		Applied Photonics
Module Manager		Prof. Dr. Andreas Heinrich
Modul Type		Mandatory Module
Academic Semest	er	1. Semester
Module Duration		1 Semester
Number LV		1
Offered		Winter Semester
Credits		5 CP
Workload Class		60 Hours
Workload Self-Stu	dy	90 Hours
Participation Requ	irements	Basic knowledge in Optics & Math
Use in other SG		none
Language		English
Module Objectives	The stude understan Special I The stude Interdisc The stude discuss th in-depth I	 onal Competence ent can name and classify optical parts and electro-optical components. He can nd and apply the basic principles of this component. Methods Competence ents can evaluate scientific research and relevant literature. iplinary Competence ent can evaluate the advantages and disadvantages of different concepts and hem in a team. The student is able to communicate scientifically and apply his knowledge.
Course Content	gradient optical f filters, gra - electro-o light sou for an add illuminat projecto detector	optical components irces and illumination (LED, SMD, OLED, structured illumination, requirements equat
Literature	Herbert G	Gross: Optical Systems

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33105	Photonics Detectors and Devices	Prof. Dr. Andreas Heinrich	V	4	5
l					L

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33105	PLR	100%	Allowed Aids: none

Requirements for Admission to the Module Exam accomplished group work

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

1 V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLP Project PPR Internship PLM Oral Exam PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

SPO-Version: 32 Module Number: 33803 **Module Name: Applications of Photonics Detectors**

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Jürgen Krapp
Modul Type	Mandatory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	1
Offered	Winter Semester, Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module **Objectives**

General

The student can organize and structure solutions to a particular problem. The students are able to determine fundamental data concerning signal power and noise by evaluation. They can use and perform basic measurements.

Professional Competence

The laboratory work enables students to gain practical experience, as they are able to carry out experiments and create measurement set-ups etc. on their own responsibility or in small teams.

Special Methods Competence

Die Studierenden können selbstständig neue Themengebiete erarbeiten. Informationen bewerten, praktische Schlussfolgerungen ziehen, neue Lösungen entwickeln und dabei sowohl gesellschaftliche/ soziale als auch ökologische und ökonomische Aspekte berücksichtigen.

Interdisciplinary Competence

Es werden die mit dem zivilgesellschaftlichen Engagement verbundenen Ziele, wie die ganzheitliche Bildung der Studierenden zu fördern, erreicht.

Course Content

Recommendation: 3 to 5 references to basic literature; Literature explicitly mark further literature

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33106	Applications of Photonics Detectors	Prof. Dr. Jürgen Krapp	L	4	

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33106	PLS, PLR	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

¹ V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLM Oral Exam PLP Project PPR Internship PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33804 **SPO-Version: 32** Module Name: Advanced Image Processing

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Jürgen Krapp
Modul Type	Mandatory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	1
Offered	Winter Semester, Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module

General

Objectives

The student can organize and structure solutions to a particular problem. The students are able to determine fundamental data concerning signal power and noise by evaluation. They can use and perform basic measurements.

Professional Competence

The laboratory work enables students to gain practical experience, as they are able to carry out experiments and create measurement set-ups etc. on their own responsibility or in small teams.

Special Methods Competence

Die Studierenden können selbstständig neue Themengebiete erarbeiten. Informationen bewerten, praktische Schlussfolgerungen ziehen, neue Lösungen entwickeln und dabei sowohl gesellschaftliche/ soziale als auch ökologische und ökonomische Aspekte berücksichtigen.

Interdisciplinary Competence

Es werden die mit dem zivilgesellschaftlichen Engagement verbundenen Ziele, wie die ganzheitliche Bildung der Studierenden zu fördern, erreicht.

Course Content

Recommendation: 3 to 5 references to basic literature; Literature explicitly mark further literature

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33107	Advanced Image Processing	Prof. Dr. Jürgen Krapp	L	4	5
l	<u></u>	1	l		L

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33107	PLS, PLR	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

¹ V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLM Oral Exam PLP Project PPR Internship PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33805 SPO-Version: 32 Module Name: Advanced Laser Technology

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Jürgen Krapp
Modul Type	Mandatory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	1
Offered	Winter Semester, Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module **Objectives**

General

The student can organize and structure solutions to a particular problem. The students are able to determine fundamental data concerning signal power and noise by evaluation. They can use and perform basic measurements.

Professional Competence

The laboratory work enables students to gain practical experience, as they are able to carry out experiments and create measurement set-ups etc. on their own responsibility or in small teams.

Special Methods Competence

Die Studierenden können selbstständig neue Themengebiete erarbeiten. Informationen bewerten, praktische Schlussfolgerungen ziehen, neue Lösungen entwickeln und dabei sowohl gesellschaftliche/ soziale als auch ökologische und ökonomische Aspekte berücksichtigen.

Interdisciplinary Competence

Es werden die mit dem zivilgesellschaftlichen Engagement verbundenen Ziele, wie die ganzheitliche Bildung der Studierenden zu fördern, erreicht.

Course Content

Recommendation: 3 to 5 references to basic literature; Literature explicitly mark further literature

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33108	Advanced Laser Technology	Prof. Dr. Jürgen Krapp	L	4	5
l	<u> </u>	1	l		L

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33108	PLS, PLR	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

¹ V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLM Oral Exam PLP Project PPR Internship PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33806 **SPO-Version: 32 Module Name: Current Topics in Photonics**

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Jürgen Krapp
Modul Type	Mandatory Module
Academic Semester	1. Semester
Module Duration	1 Semester
Number LV	1
Offered	Winter Semester, Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module **Objectives**

General

The student can organize and structure solutions to a particular problem. The students are able to determine fundamental data concerning signal power and noise by evaluation. They can use and perform basic measurements.

Professional Competence

The laboratory work enables students to gain practical experience, as they are able to carry out experiments and create measurement set-ups etc. on their own responsibility or in small teams.

Special Methods Competence

Die Studierenden können selbstständig neue Themengebiete erarbeiten. Informationen bewerten, praktische Schlussfolgerungen ziehen, neue Lösungen entwickeln und dabei sowohl gesellschaftliche/ soziale als auch ökologische und ökonomische Aspekte berücksichtigen.

Interdisciplinary Competence

Es werden die mit dem zivilgesellschaftlichen Engagement verbundenen Ziele, wie die ganzheitliche Bildung der Studierenden zu fördern, erreicht.

Course Content

Recommendation: 3 to 5 references to basic literature; Literature explicitly mark further literature

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33109	Current Topics in Photonics 1	Prof. Dr. Jürgen Krapp	L	4	5
		-			

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33109	PLS, PLR	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

¹ V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLM Oral Exam PLP Project PPR Internship PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

SPO-Version: 32 Module Number: 33807 Module Name: Optical Systems Workshop

Degree Program	Applied Photonics	
Module Manager	M.Sc. Dipl. Ing. (FH) Michael Wagner	
Modul Type	Mandatory Module	
Academic Semester	2. Semester	
Module Duration	1 Semester	
Number LV	1	
Offered	Summer Semester	
Credits	5 CP	
Workload Class	60 Hours	
Workload Self-Study	90 Hours	
Participation Requirements	Basic knowledge in Optics & Math and Matlab	
Use in other SG	none	
Language	English	

Module **Objectives**

Professional Competence

Students can implement optical systems and wave optics. Parallel to the theoretical lecture, students can build up experiments and apply their theoretical knowledge. They are able to illustrate, analyze and discuss different experimental solutions.

Special Methods Competence

Students can set up and carry out experiments, transfer theoretical knowledge and identify and solve problems that arise in practice.

Interdisciplinary Competence

The students can discuss and convince their opponents with a scientific discussion. They can find a common solution.

Course Content - Reflection and refraction

- Paraxial optics and lenses
- Matrix optics and ray tracing
- Optical instrument
- Waves and interference
- Gaussian beams
- Polarization
- Literature Hand-out, detailed manuscript Fundamentals of Photonics, B.E. Saleh et al, Wiley (1991) Principles of Optics, M. Born et al., Pergamon Press (1977) Optics, Hecht, Addison (1980)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33110	Optical Systems Workshop	M.Sc. Michael Wagner	V, L	4	5

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33110	PLK (60 minutes)	100%	

Requirements for Admission to the Module Exam all reports need to be handed in on time

Further Study-Related Feedback None

Comments:

Last Update: 13.04.2023, Wagner

¹ V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLP Project PPR Internship PLM Oral Exam PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33809SPO-Version: 32Module Name: Advanced Optical Communications Technology

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Jürgen Krapp
Modul Type	Elective Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	1
Offered	Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	proved knowledge of optical fiber communication (admission for exam)
Use in other SG	none
Language	English

Module Objectives

Professional Competence

Students will be able to explain and evaluate a sound knowledge of fiber optic networks, including structure, functionality and properties of the corresponding components. They will be able to compare sustainable network concepts and understand the principles of coherent optical transmission.

Special Methods Competence

Methodically this subject emphasize on self-reliant learning by guided seminars. The student can analyze the corresponding literature on his own responsibility and differentiate between relevant and irrelevant information. He is able to present solutions and results.

Course Content LAN, MAN, WAN, PDH, SDH/SONET, ATM, QAM, xDSL, AON, PON, HFC/CATV, FSO, Satellite Communication, DWDM, OTN (Optical Transport Network), OMUX/ODMUX, OADM, ROADM, Optical Switches Technologies, Fiber Nonlinearities, Raman Fiber Amplifier, NRZ and RZ transmission, Duobinary optical transmission, DPSK and RZ-DPSK, Coherent Transmission.

Literature

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33203	Advanced Optical Communications Technology	Prof. Dr. Jürgen Krapp	L	4	5

¹ V Lecture L Lab S Seminar PR Internship E Excursion Ü Practice P Project K Colloquium Bachelor from SPO 33 (§ 63); Master from SPO 32

EX Experiment X N EL E-Learning

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33203	PLK (90 minutes)	80%	
	PLR	20 %	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 22.03.2023, Fritz

Module Number: 33810 Module Name: Optics Technology

SPO-Version: 32

Degree Program		Applied Photonics		
Module Manager		Prof. Dr. Rainer Börret		
Modul Type		Elective Module		
Academic Semes	ter	2. Semester		
Module Duration		Semester		
Number LV		1		
Offered		ummer Semester		
Credits		5 CP		
Workload Class		60 Hours		
Workload Self-Stu	ıdy	90 Hours		
Participation Requ	uirements	Module 33035 (Fundmental Optics) or equivalent course		
Use in other SG		none		
Language		English		
Module Objectives	The stud technolog The Stud technolog They are the techn Special I They can Interdisc Students	 onal Competence ents are able to describe and apply their profound knowledge of optical gies and measurement techniques by themselves. lents are able to analyze the optical specifications in order to choose the right gies and suppliers. able to set up an adequate process chain for specific optical components due to nical and economic constraints in companies. Methods Competence interpret and apply the DIN ISO specification. ciplinary Competence can present and defend their results. They can work in a team.		
- errorbu - selected - new mo - coating		ations: From ISO 10 110 to power spectral density dget optics d processes for fabrication of different optical elements bulding processes for glass and plastics design and coating technology specifications and fabrication of diffractive optical elements		
Literature	J. Bliedtr Braunecł	ipt and publications ler, G. Grafe, R. Hector, Optical Technology ker, Hentschel, Tiziani, Advanced Optics with Aspherics court, Optical Thin Films		

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33206	Optics Technology	Prof. Dr. Rainer Börret	V, L	4	5
					l

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33206	PLM (20 Minutes)	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz, 04.04.2023 R.Boerret

1 V Lecture L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed E Excursion K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLS Term Paper/Research Report PLE Draft/Design PLF Portfolio PMC Multiple Choice PLM Oral Exam PLP Project PPR Internship PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33811SPO-Version: 32Module Name: Current Topics in Photonics 2

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Andreas Walter
Modul Type	Mandatory Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	1
Offered	Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module Objectives

General

The student will be able to follow scientific talks, evaluate the information critically, and gain new insights into international state-of-the-art research on photonics. The student will be able to broaden his horizon while, at the same time, focus on a dedicated topic of his/her interest and understand this in great detail.

Professional Competence

The lectures allow the students to stay ahead with state-of-the-art research in the field of photonics and get insights into a variety of optical topics that will help guide their interests and enable them to address research questions scientifically.

Special Methods Competence

Students will be able to independently develop new topics from the latest research, evaluate information, and draw practical conclusions.

Interdisciplinary Competence

Strong interdisciplinarity: a wide range of optics topics are covered, from image processing to biophotonics.

Course Content

Literature Recommendation: 3 to 5 references to basic literature; explicitly mark further literature

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33207	Current Topics in Photonics 2	Prof. Dr. Andreas Walter	V	4	5

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33207	PLS, PLR	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 05.06.2023, Andreas Walter

1 V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLS Term Paper/Research Report PLE Draft/Design PLF Portfolio PMC Multiple Choice PLM Oral Exam PLP Project PPR Internship PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33812 Module Name: Optical Systems

SPO-Version: 32

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Andreas Heinrich
Modul Type	Mandatory Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	1
Offered	Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	Basic knowledge in Optics & Math and Matlab
Use in other SG	none
Language	English

Module Objectives

Professional Competence

Students can implement optical systems and perform system tests. Parallel to the theoretical lecture, students can build up experiments and apply their theoretical knowledge. They are able to illustrate, analyze and discuss different experimental solutions.

Special Methods Competence

Students can set up and carry out experiments, transfer theoretical knowledge and identify and solve problems that arise in practice.

Interdisciplinary Competence

The students can discuss and convince their opponents with a scientific discussion. They can find a common solution.

Course Content - basics in optical systems design

- Aberreations
- Image Quality
- Tolerancing
- Materials
- Optimechanics
- Coating
- Analysis
- optical System testing

Literature Hand-out, detailed manuscript with exercises

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33204	Optical Systems	Prof. Dr. Andreas Heinrich	V, L	4	5
L					

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33204	PLK (60 minutes)	100%	

Requirements for Admission to the Module Exam all reports need to be handed in on time

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

1 V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLP Project PPR Internship PLM Oral Exam PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

SPO-Version: 32

Module Number: 33813 Module Name: Project / Soft Skills

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Jürgen Krapp
Modul Type	Compulsory Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	1
Offered	Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Professional Competence

The students are able to understand and validate different laser types.

Special Methods Competence

The students are able to design, analyse and validate resonator optics, align lasers and determine their performance experimentally.

Interdisciplinary Competence

The laboratory work enables students to apply theoretical knowledge. They are able to perform experiments in a self-reliant way within a small team.

- **Course Content** Laser dynamics, pulsed lasers and pulse dispersion, laser clocks, advanced resonator design, femtosecond lasers, coherence and stochastic optics
- Literature Laser photonics lecture notes with bibliography

Included Courses (LV)

Module

Objectives

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33209	Laser Photonics	Prof. Dr. Thomas Hellmuth	L	4	5
l	ļ	l			

¹ V Lecture L Lab S Seminar PR Internship E Excursion Ü Practice P Project K Colloquium Bachelor from SPO 33 (§ 63); Master from SPO 32

PR Internship EX Experiment K Colloquium EL E-Learning

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33209	PLM (30 Minutes)	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

Module Number: 33815 Module Name: Optical Systems

SPO-Version: 32

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Andreas Heinrich
Modul Type	Mandatory Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	1
Offered	Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	Basic knowledge in Optics & Math and Matlab
Use in other SG	none
Language	English

Module Objectives

Professional Competence

Students can implement optical systems and perform system tests. Parallel to the theoretical lecture, students can build up experiments and apply their theoretical knowledge. They are able to illustrate, analyze and discuss different experimental solutions.

Special Methods Competence

Students can set up and carry out experiments, transfer theoretical knowledge and identify and solve problems that arise in practice.

Interdisciplinary Competence

The students can discuss and convince their opponents with a scientific discussion. They can find a common solution.

Course Content - basics in optical systems design

- Aberreations
- Image Quality
- Tolerancing
- Materials
- Optimechanics
- Coating
- Analysis
- optical System testing

Literature Hand-out, detailed manuscript with exercises

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33204	Optical Systems	Prof. Dr. Andreas Heinrich	V, L	4	5
L					

Module Examination (Prerequisite for the Award of Credit Points)

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33204	PLK (60 minutes)	100%	

Requirements for Admission to the Module Exam all reports need to be handed in on time

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

1 V Lecture E Excursion L Lab S Seminar Ü Practice P Project PR Internship EX Experiment X Not Fixed K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32 2 PLK Written Exams PLR Presentation PLL Lab Work PLT Study Diary PLE Draft/Design PLF Portfolio PLS Term Paper/Research Report PMC Multiple Choice PLP Project PPR Internship PLM Oral Exam PLC Multimedia-Based Examination PLA Practical Work (E-Exam) Bachelor from SPO 33 (§ 20); Master from SPO 32

Module Number: 33816 Strategies

SPO-Version: 33

Degree Program	Applied Photonics
Module Manager	Prof. Dr.
Modul Type	Elective Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	1
Offered	Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	
Language	LV 33205: English

Module Objectives

Professional Competence

The students are able to design optical systems and analyze optical aberrations to optimize optical system performance and to compare and validate different approaches.

Interdisciplinary Competence

The project work enables students to design various parts of an optical system and combine them within a team for the development of optomechanical devices. They are able to handle tool elements of an optical design program to design, simulate and analyze optical system.

Course Content

Literature Recommendation: 3 to 5 references to basic literature; explicitly mark further literature

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33205	Optical Design Strategies		V, L	4	5

¹ Type of course according to: Allgemeiner Teil der SPO (§ 63 BA-TA-18-1; § 55 MA-TA-20-1).

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33205	PLM (30 Minutes)	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

2

Last Update: 23.03.2023, Fritz

Types of examinations according to: Allgemeiner Teil der SPO (§ 20a BA-TA-18-1; § 18a MA-TA-20-1).

SPO-Version: 32

Module Number: 33817 Module Name: Advanced Optical Design

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Thomas Hellmuth
Modul Type	Elective Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	1
Offered	Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module Objectives

Professional Competence

Students are able to design advanced optical systems with the optical design program CodeV, simulate physical optical phenomena, design and simulate illumination systems.

Special Methods Competence

Students are able to select and apply methods for the analysis and validation of optical systems to optimize and develop innovative solutions.

Interdisciplinary Competence

The students simulate, design and validate optical systems with an optical design program to develop optomechanical systems. The results are presented by the respective groups.

Course Content Aberration theory, correction strategies, programming and handling of optical design programs

Literature Lecture notes and data sheets

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33208	Advanced Optical Design	Pretorius/Frasch	L	4	5

¹ V Lecture L Lab S Seminar PR Internship E Excursion Ü Practice P Project K Colloquium Bachelor from SPO 33 (§ 63); Master from SPO 32

PR Internship EX Experiment K Colloquium EL E-Learning

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33208	PLK (90 Minutes)	100%	Allowed Exam Materials: Calculator

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

Module Number: 33818 **Module Name: Illumination**

SPO-Version: 32

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Andreas Heinrich
Modul Type	Elective Module
Academic Semester	2. Semester
Module Duration	1 Semester
Number LV	1
Offered	Winter Semester, Summer Semester
Credits	5 CP
Workload Class	60 Hours
Workload Self-Study	90 Hours
Participation Requirements	none
Use in other SG	none
Language	English

Module **Objectives**

Professional Competence

Students can understand the lighting in a basic way. They can describe their knowledge

of phenomena that describe the interaction of light waves in optical systems. This allows them to represent the difference between beam and wave optics. This will allow students to see the limits and describe improved optical effects. In addition, students can apply simulation software and transfer their understanding of lighting system design.

Special Methods Competence

Students are able to analyse literature and distinguish between relevant and irrelevant information. They can evaluate and judge optical phenomena.

Interdisciplinary Competence

They can discuss and evaluate the advantages and disadvantages of different approaches in a team. They can express themselves scientifically and apply their knowledge.

Course Content The students can choose out of this topics:

- 1 Introduction
- 2 Radiometry and apertures
- 3 Illumination in Imaging Systems
- 4 Illumination in Nonimaging Systems
- **5** Spectoradiometric Quantities
- 6 Radiometric and Photometric quantities
- 7 Color
- 8 Scattering of Light
- 9 Illumination Properties of Materials
- 10 Sources of Illumination
- 11 Coherence
- 12 Fibers, Lightpipes and Ligthguides
- 13 Classical Illumination Design
- 14 Uniform Illumination
- 15 Source Modeling Methods
- 16 Nonimaging Compound Concentrators
- 17 Displays
- 18 Characterizing Illumination Systems
- 19 Software Modelling
- 20 Architectural Illumination
- 21 Light and Visual Performance
- 22 Lighting Design
- 23 Illumination in Photography
- 24 Luminaire for Open-Plan Office
- 25 Daylight Compensation
- 26 Exterior Lighting
- 27 Parking
- 28 Roadway Lighting
- 29 Resolution Enhancement by Illumination in Microscopy and Photolithography
- 30 Special Illumination Techniques for Measurements
- **31 Illumination in Particle Optics**

Literature

Included	Courses	(LV)
----------	---------	------

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33210	Illumination	Dr. Johannes Eisenmenger	L	4	5

X Not Fixed

¹ V Lecture L Lab S Seminar PR Internship EX Experiment E Excursion Ü Practice P Project K Colloquium EL E-Learning Bachelor from SPO 33 (§ 63); Master from SPO 32

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33210	PLK (90 Minutes)	100%	

Requirements for Admission to the Module Exam None

Further Study-Related Feedback None

Comments:

Last Update: 23.03.2023, Fritz

SPO-Version: 32

Module Number: 33823 Module Name: Medical Physics

Degree Program	Applied Photonics		
Module Manager	Prof. Dr. Andreas Walter		
Modul Type	Optional Module		
Academic Semester	2. Semester		
Module Duration	1 Semester		
Number LV	1		
Offered	Summer semester		
Credits	5 CP		
Workload Class	60 Hours		
Workload Self-Study	90 Hours		
Participation Requirements	Basic knowledge in physics & mathematics		
Use in other SG	none		
Language	English		

Module

Professional Competence

Objectives

The students will acquire technical, physical, and application-oriented knowledge regarding the interaction of radiation with tissue and modern physical techniques in medicine. This includes a preliminary advanced understanding of physics, such as quantum or nuclear physics. This knowledge will be interdisciplinary transferred to the field of biomedical research and diagnostics.

The students will learn to analyze and comprehend peer-reviewed current literature on the topic of medical physics, as well as present an overview in a short scientific presentation. The independent processing of specific topics, taking into account previous subject

knowledge, literature, and scientific methodology, prepares the students for the requirements of the master's thesis.

Special Methods Competence

The students optimize their presentation techniques (presentation design) and effectively utilize methods for acquiring information (literature search, review, management). They will learn to apply complex mathematical and physical concepts to concrete applications in medical physics.

Interdisciplinary Competence

By definition, the lecture combines technical and medical knowledge and explores the latest procedures and fundamentals for combating diseases and enhancing our understanding of them. Advanced physics understanding is essential for this purpose. The students will learn to evaluate biomedical research quantitatively.

Course Content

1. Generation & Interaction of Radiation in Medical Diagnostics & Therapy

- a. Motivation & Introduction to Anatomy
- b. Light & Medical Laser-Tissue Interactions
- c. Bremsstrahlung & X-Rays
- d. Radioactivity, Gamma and Particle Radiation
- 2. Optical Diagnostics
 - a. Endoscopy
 - b. Medical Optical Coherence Tomography & Photoacoustics
- 3. Radiological Diagnostics & Imaging
 - a. X-ray Diagnostics
 - b. Computed Tomography (CT)
 - c. Magnetic Resonance Imaging (MRI)
 - d. Ultrasound

4. Nuclear Medicine: Diagnostics & Imaging

- a. Single Photon Emission Computer Tomography (SPECT)
- b. Positron Emission Tomography (PET)
- c. SPECT/PET Hybrid Setups

5. Radiation Therapy

- a. Optical Therapy
- b. Basics of Radiation Physics & Dosimetry
- c. Biological Basis of Radiation Therapy
- d. Radiation Delivery Techniques
- e. Radiation Therapy with Electrons & Neutrons
- f. Radiation Therapy with Charged Particles

6. Medical Engineering

- a. Portable Healthcare
- b. Treatment with Electrical Current
- c. Prothesis

Literature

- An Introduction to Medical Physics, edited by Muhammad Maqbool, Springer International Publishing AG, 2017
- Medizinische Physik, Wolfgang Schlegel, Springer Spektrum, 2018
- Imaging Modalities for Biological and Preclinical Research: A Compendium, Volume II, Andreas Walter, IPEM-IOP Series, 2021

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
33823	Medical Physics	Prof. Dr. Andreas Walter	V	4	5

¹ V Lecture L Lab S Seminar PR Internship E Excursion Ü Practice P Project K Colloquium Bachelor from SPO 33 (§ 63); Master from SPO 32

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
33215	PLK (90 minutes)	100%	

Requirements for Admission to the Module Exam Presentation in class

Further Study-Related Feedback None

Comments:

Last Update: 02.06.2023, Andreas Walter

SPO-Version: 32

Module Number: 9999 Module Name: Project / Soft Skills

Degree Program	Applied Photonics
Module Manager	Prof. Dr. Jürgen Krapp
Modul Type	Mandatory Module
Academic Semester	3. Semester
Module Duration	1 Semester
Number LV	2
Offered	Winter Semester, Summer Semester
Credits	30 CP
Workload Class	-
Workload Self-Study	900 Hours
Participation Requirements	50 credit points reduced by 5 credits for every extra-occupational semester, module 33001 (project) passed
Use in other SG	none
Language	English

ModuleProfessional CompetenceObjectivesThe students can apply the contents of the curriculum independently in a scientific paper.
They can analyze demanding specialist literature. They can analyze and evaluate the
results and carry out experimental measurements in research areas. They are able to
defend the results of the Master's thesis in an oral presentation and document them in a
written report.

- Course Content Actual work in different fields of photonics
- Literature Subject specific books and publications

Included Courses (LV)

LV-Nr.	Course Name	Professor	Type ¹	SWS	СР
9999	Master Thesis	All Photonics Professors	Р		24
9998	Colloquium	All Photonics Professors	к		6

EX Experiment X Not Fixed EL E-Learning

¹ V Lecture L Lab S Seminar PR Internship E Excursion Ü Practice P Project K Colloquium Bachelor from SPO 33 (§ 63); Master from SPO 32

LV-Nr.	Type and Duration of Proof of Performance ²	Determination of Module Grades	Comments
9999	PLA	80 %	All parts of the thesis have to be performed individually; participation of more than one student is not permitted; each student works on its own topic.
9998	PLM	20 %	slides of presentation in English

Requirements for Admission to the Module Exam

None

Further Study-Related Feedback

None

Comments:

•

- Oral part of examination consists of an oral presentation in English (mandatory) of 15 minutes duration and 15 minutes oral questioning in English shared by first and second examiner. Student has to answer in English.
- Written report may be in English or German language according the requirement of first adviser/examiner.
- Maximum prolongation in case of delay that student doesn't take responsibility for is 8 weeks; prior approval of dean of students required.
 - Submission of Master thesis includes (delivery signed in student's separation form)
 - Abstract of thesis in English
 - Information sheet for database
 - PDF-file of thesis

Last Update: 22.03.2023, Fritz