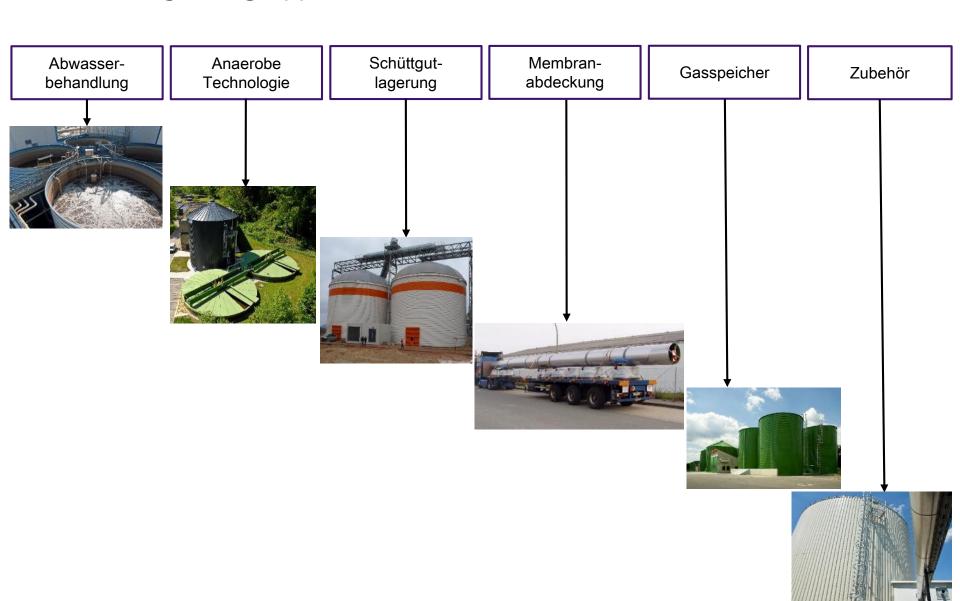
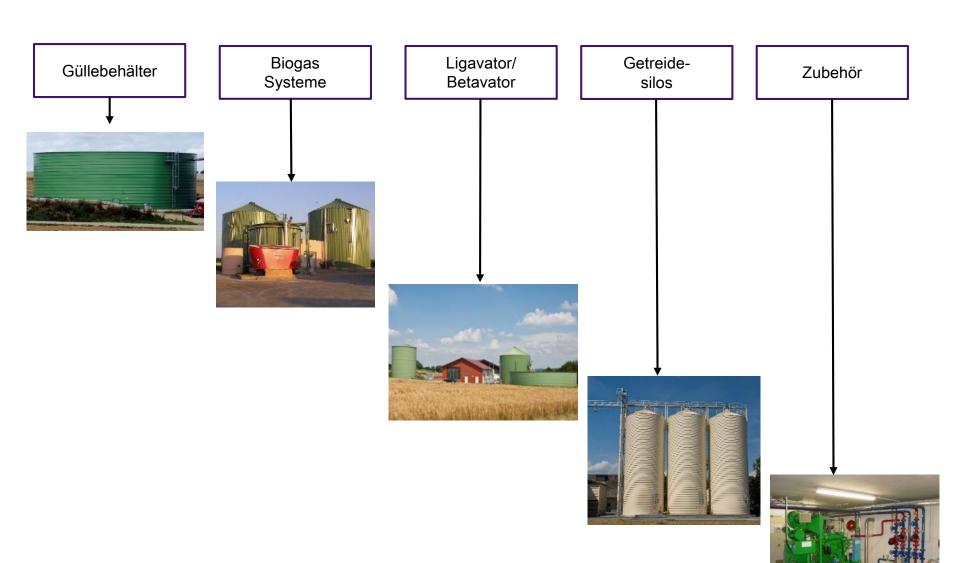
LIPP GMBH

WORKSHOP KEFF HOCHSCHULE AALEN 27.09.2017

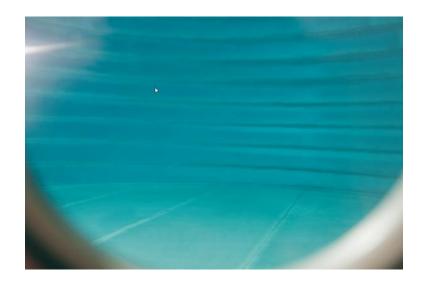
Lipp GmbH — Historie


1958	Firmengründung durch Xaver Lipp	
	Blechbearbeitung, Behälter- und Anlagenbau	
1970	Entwicklung des Doppelfalzsystems	
1972	Erste landwirtschaftliche Biogasanlage in Europa	
2002	Lipp GmbH erhält als erstes Unternehmen in Deutschland	
	das RAL-Gütezeichen für Biogasanlagen	
2005	Innovationspreis für Verbundwerkstoff `Verinox`	
2011	Familienunternehmen in der 3. Generation: Manuel Lipp übernimmt Geschäftsführung	
2016	Lipp GmbH erhält EU Förderprogramm Horizon 2020	
2017	Umwelttechnikpreis BW "Materialeffizienz"	

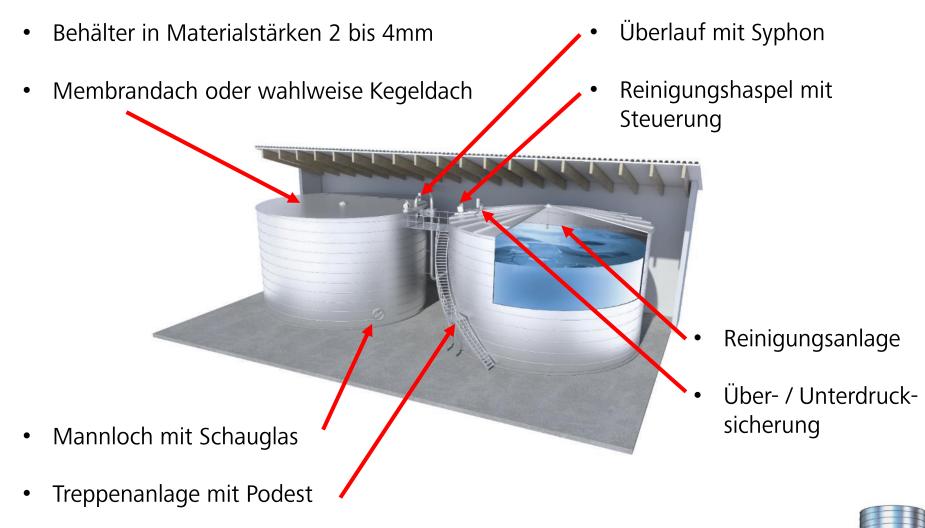


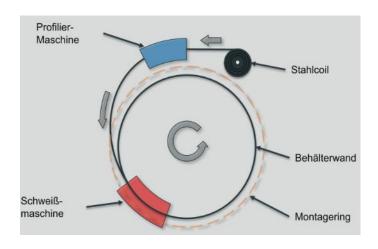
Anwendung / Zielgruppe: Industrie und Kommune

Anwendung / Zielgruppe: Landwirtschaft



Anwendung / Zielgruppe: Industrie und Kommune




LIPP Trinkwasserbehälter

Prinzip: Spiralbehälterbauweise

Idee für eine automatisierte Herstellung von geschweißten Behältern

Umsetzung parallel zu Kundenaufträgen ist zeitlich und finanziell schwer machbar.

→ Keine Zeit zum Forschen...

Möglichkeit: Förderung über ZIM Zentrales Innovationsprogramm Mittelstand

Über die ZIM Förderung werden hauptsächlich Arbeitsstunden gefördert die für die Forschung, Ausarbeitung, Versuche und deren Dokumentation benötigt werden.

LIPP geht mit einem Innovationsberater in Richtung ZIM

Zielstellung des Anfang 2013 beantragten ZIM-Projektes

Projektziel:

- Geschweißte Tanks aus Edelstahl
- Automatisiertes und ressourcenschonendes Schweißverfahren auf der Baustelle

Kurzfassung:

- Entwicklung eines Prototyps zur automatisierten Behälterherstellung vor Ort
- Materialstärken 2 4 mm
- Behältervolumen bis 1000 m³
- Endlosbandverfahren vom Coil ausgehend
- Mit umlaufender Rippe (Auskragung)
- Materialeinsparung von etwa 20%

Von der Projektidee über die Bewilligung bis zur Genehmigung des Schlussberichtes

- In Q3 2012 erste Kontaktaufnahme mit Beratungsunternehmen
 - Ursprünglich: Kooperationsprojekt mit Schweißfachunternehmen und Ingenieurbüro
 - Einreichung der Projektskizze am 15.11.2012 beim AiF (als Kooperationsprojekt)
- Positives Feedback des Projektträgers hinsichtlich der Projektidee. Bedenken hinsichtlich der Partnerstruktur → <u>Umschwenken auf ein Einzelprojekt</u>
- 10.12.2012 Einreichen der überarbeiteten Projektskizze bei der Euronorm (als Einzelprojekt)
- 13.12.2012 Positives Feedback des Projektträgers und Aufforderung zur Antragstellung
- 16.01.2013 Eingang der Antragsunterlagen bei der EuroNorm in Berlin:

 - Personalkosten und Gemeinkosten 50/50 und projektbezogene Aufträge an Dritte
- 17.01.2013 Beginn des Projektes auf eigenes Risiko

Von der Projektidee über die Bewilligung bis zur Genehmigung des Schlussberichtes

- 06.05.2013: Erhalt des Zuwendungsbescheides:
 Projektlaufzeit 17.01.2013 bis 30.06.2014
- 14.10.2013: Einreichung des Zwischenberichtes (17.01.-01.10.2013)
- 26.06.2014: Antrag auf kostenneutrale Projektverlängerung bis 31.12.2014 (6 Mon)
- 12.08.2014: Bewilligung des Änderungsbescheids
- 31.12.2014: Offizielles Ende der Projektlaufzeit
- 14.04.2015: Einreichung der Abschlussunterlagen

(Verwendungsnachweis, Abschlussbericht und letzte Zahlungsanforderung)

- → Erhaltene Gelder laut Verwendungsnachweis:
- 26.05.2015: Erhalt der finalen Schlusszahlung (Rest 10%)

Weitere Zuwendung über geförderte Leistungen zur Markteinführung (ZIM-DL)

• 06.03.2014 Antrag eingereicht:

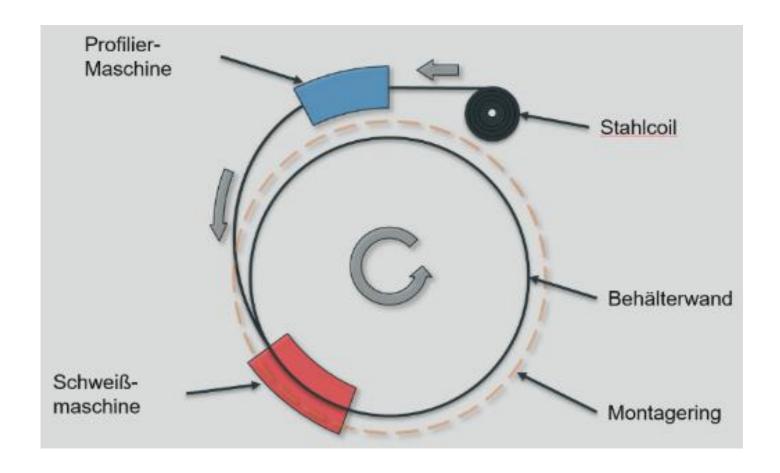
Kosten beantragt etwa15.000 €

Zuwendung: 50 %

• 03.11.2015 Änderungsbescheid und Aufstockung des ZIM-DL:

– erweiterte Kosten etwa 45.000€

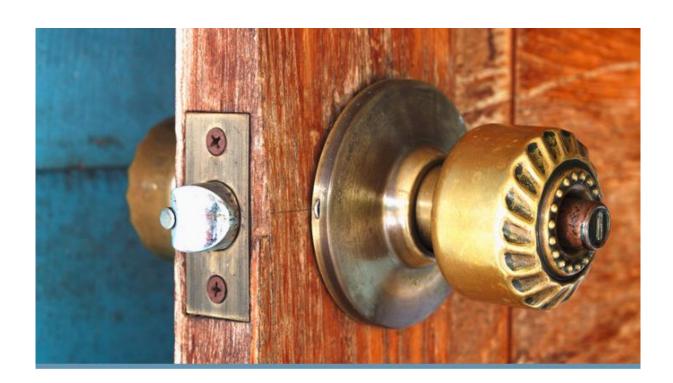
Zuwendung: 50%



Chancen und Risiken

Chancen	Risiken
Zuschüsse für Innovationsaufwand	
Weniger Aufwand des Unternehmens für die Antragstellung und Reporting durch Unterstützung von Innovationsberatern	Unternehmen müssen trotzdem in Vorleistung gehen. Projektkonzeption sollte vor der Antragstellung erarbeitet sein.
Es darf mit Antragseinreichung auf eigenes Risiko begonnen werden	Wird das Projekt nachträglich abgelehnt, bleibt das Unternehmen auf den bisherigen Kosten sitzen
Es gibt die Möglichkeit der zusätzlichen DL-	Förderung erfolgt bis zum Prototyp
Förderung (bis zu 50.000€, davon 50%	(Markeinführung ist trotzdem noch
gefördert)	riskant und ressourcenaufwändig)
Es werden pauschal 100% Gemeinkosten gewährt	Es werden keine Materialkosten gefördert (schlecht für materialintensive Projekte)
Kostenneutrale Projektverlängerung ist in	Projektkosten können bedeutend höher
der Regel möglich	ausfallen

Ergebnis: Prototyp der Maschine TM30E-X-10



Weitere Optimierungen und Vermarktung über EU Förderung Horizon 2020

Start des EU Förderprojekts Horizon 2020 im Juni 2016

- Projektlaufzeit 24 Monate
- Fördersumme etwa1,552 Mio €
- Ziel Markteinführung "geschweißte Trinkwasserbehälter

LIPP Trinkwasserbehälter – Aufbau des Montagerings

Montagering

- ► Elemente der Stützstruktur werden angepasst und ausgerichtet
- ► Coilwagen mit Edelstahlband wird in die Profilliermaschine eingefahren
- ▶ Die Schweißmaschinen werden innen wie außen positioniert
- ► Nach Einrichten der ersten Behälterumdrehung beginnt der automatisierte Schweißprozess

LIPP Trinkwasserbehälter – Aufbau des Behältermantels

Behälter- und Dachmontage

- ► Nach etwa 1,5m Mantelhöhe erfolgt der Ebenschnitt danach wird das Dach aufgesetzt
- ▶ Behälterwand wird weiter bis auf Sollhöhe gedreht
- ► Behälterunterseite wird eben geschnitten
- ► Der Behältermantel wird zum Boden zurückgedreht
- ► Verschweißung von Boden und Dach

LIPP Trinkwasserbehälter – Behälterinnenseite

Innenseite

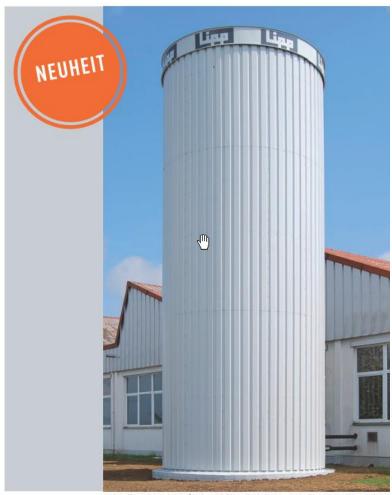
- ► Schweißnähte werden geschliffen oder gebürstet
- ▶ Beizen und Passivieren der gesamten Innenfläche
- ► Neutralisieren um alle Rückstände zu beseitigen

Montage der Einbauteile

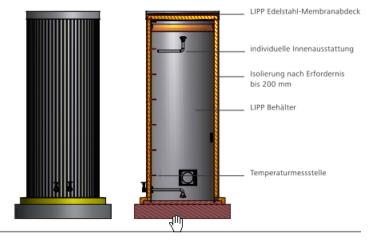
- ▶ Überlaufkasten mit Syphon und Luftfilter
- ► Grundablasskasten mit Sieb
- ► Mannloch und Schaugläser
- ▶ Domdeckel, Beleuchtungseinrichtung
- ► Über- Unterdruckventil
- ► Automatische Reinigungseinrichtung

LIPP Trinkwasserbehälter – Messeauftritt Wasser Berlin

LIPP Trinkwasserbehälter – Umwelttechnikpreis Baden Württemberg


LIPP Trinkwasserbehälter – Übergabe

So sehen zufriedene Kunden aus ©


LIPP Pufferspeicher

LIPP Pufferspeicher

zur Zwischenspeicherung regenerativer Energien

Der LIPP Pufferspeicher ist die bedarfsgerechte und individuell angepasste Lösung für Wärmespeicherung regenerativer Energien mit einem Nutzvolumen von 80 bis 3.000 m³.

Um Wärme von Biogasanlagen, Biomasseheizkraftwerken, Solaranlagen oder anderer Wärmequellen effektiv zu nutzen ist eine sinnvolle Zwischenspeicherung Grundvoraussetzung. Der LIPP Pufferspeicher mit flexibler Größe bietet hierzu die optimale Lösung. Die Behälter werden im bewährten LIPP-Doppelfalzsystem vor Ort gefertigt. Mit einer auf den Einsatzzweck abgestimmten Isolieru entstehen großvolumige, überirdische Speicher mit eir individuell angepassten Innenausstattung. Die Speiche arbeiten hierbei im drucklosen Bereich mit einer Betrie temperatur von bis zu 95°C und sind für den Betrieb r Heizungswasser ausgelegt.

Technische Daten

Volumen 80 bis 3.000 m³ größer auf Anfrage

Medium Heizungswasser

Betriebsdruck drucklos

Betriebstemperatur bis 95° C

Außenfarbe wählbar nach RAL

Werkstoffe

Behälter Edelstahl VERINOX Ein Kombinationswerkstoff aus beidseitig verzinktem Stahl und einer Dublierung aus Edelstahl, z.B. 1.4301 oder 1.4571 auf der mediumberührenden Seite.

Dach und Einbauteile Edelstahl, z.B. 1.4301

Weitere auf Anfrage

Ausstattung

Für die technische Ausrüstung der Behälter steht ein breites Sortiment an peripherem Zubehör zur Verfügung: Behälterdach Behälterboden Dachisolierung Behälterisolierung Temperatursensoren Treppen, Leitern, Podeste, Stutzen, Mannlöcher,

Fachbetrieb

LIPP ist Fachbetrieb nach Para graph 19 des Wasserhaushalt: gesetzes und achtet besonder auf die Langlebigkeit seiner Produkte, auf eine fachgerech Ausführung und eine solide Verarbeitung bis ins Detail.

