Studien- und Abschlussarbeiten

Hauptbetreuer: Prof. Dr. Arif Kazi


Von allen derzeit bekannten Aktor-Materialien haben Formgedächtnis-Legierungen (engl. Shape Memory Alloys, SMA) die höchste Energiedichte. Da diese Legierungen mit der Form­änderung auch ihren elektrischen Widerstand ändern, können Formgedächtnis-Elemente nicht nur als Aktoren, sondern gleichzeitig auch als Sensoren eingesetzt werden. Mit ihrer einfachen Bauform eigenen sich Formgedächtnis-Elemente hervorragend für die Miniatu­risierung.

Die Fa. Actuator Solutions in Gunzenhausen hat sich auf die Entwicklung innovativer Aktoren auf der Basis von Formgedächtnis-Legierungen spezialisiert. Das Unternehmen produziert mehrere Millionen Aktoren pro Jahr, vorwiegend für die Automobilindustrie. Aktuell wird eine Bildstabilisierung für Smartphone-Kameras entwickelt, für die das Unternehmen auch den Innovationspreis 2014 in der Kategorie Mittelstand erhalten hat (siehe http://www.wiwo.de/technologie/forschung/innovationspreis-sieger-kategorie-mittelstand-actuator-solutions-muskeln-aus-drahtseilen-/9716644.html).

Weitere innovative Ideen und Konzepte warten darauf, im Rahmen von Bachelor- und Masterarbeiten in die Realität umgesetzt zu werden!

Hauptbetreuer: Prof. Dr. Arif Kazi

Bearbeitungszeit ab 01.03.2019 bis 31.07.2019


Im Labor zur Vorlesung „Aktorik“ sollen die Studierenden in Zukunft die Betriebskennlinien von Gleichstrommotoren vermessen und die Motorparameter identifizieren. Die Gleichstrommotoren werden hierzu bei verschiedenen Spannungen und Lastmomenten betrieben, die Drehzahlen und Motorströme werden erfasst.

Im Rahmen von vorangehenden Studienarbeiten einen Prüfstand für elektrische Kleinmotoren realisiert. Er umfasst einen Wechseladapter für Motoren, eine Hysteresebremse, einen Halleffekt-Drehzahlsensor mit Anzeige und einen eigenentwickelten DMS-Drehmoment-Messflansch. Bei ersten Probemessungen konnte die prinzipielle Funktionstauglichkeit des Prüfstands nachgewiesen werden. Allerdings wurde auch deutlich, dass speziell die Drehmomentmessung noch nicht robust gegenüber Umgebungseinflüssen (z.B. Temperatur des Raums bzw. des Versuchsaufbaus) ist.

In der ausgeschriebenen mechatronischen Projektarbeit soll die Messfähigkeit des vorhandenen Prüfstands gezielt untersucht und verbessert werden. In diesem Zusammenhang sind folgende Arbeitsschritte erforderlich:

  • Kalibration des existierenden Drehmoment-Messflanschs und Durchführung von Probemessungen

    Systematische Analyse der Auswirkung von Störeinflüssen auf die Messdaten (speziell Temperatur)

    Systematische Definition und Bewertung von Abhilfemaßnahmen

    Auswahl und Umsetzung der Abhilfemaßnahme(n)

    Quantitative Beurteilung der erreichten Verbesserung im Rahmen von erneuten Probemessungen

Bei einer erfolgreichen Bearbeitung der Themenstellung besteht ggf. die Möglichkeit, die Arbeiten als Forschungsmaster-Thema im Rahmen des BMBF-Forschungsprojekts "miniSMArt" weiterzuführen.
Hauptbetreuer: Prof. Dr. Arif Kazi


Shape memory alloys (SMA) are metallic Ni-Ti alloys that are easily deformed at low temperatures, but will recover a predetermined shape when heated. The shape memory effect is due to a crystallographic reversible phase transformation between a low-temperature martensitic and a high-temperature austenitic phase of the alloy. SMA wire actuators are attractive for a wide range of mechatronic applications because of their high energy density, light weight, noise-less operation and ease of miniaturization. SMA wires also change their electrical resistance with their shape, so they can act as actuators and sensors at the same time.

Promising new application fields for SMA actuators are underwater robotics and subsea devices. Conventional electromagnetic motors require encapsulation when used under water, which significantly increases both complexity and costs. For SMA actuators, working under water is even beneficial, as cooling rates are increased and the dynamic response is improved. Shape memory alloys from Ni-Ti are also highly corrosion resistant and will not degrade when operating in salt water. One potential drawback, however, is the energy consumption due to the heating power lost to the surrounding water.

The goal of this bachelor thesis is to identify possible trade-offs between the dynamic behavior and the required heating power of SMA actuators working under water. The heat transfer from the SMA wire to the surrounding water shall be tailored by coatings of appropriate material and thickness. The coating, however, needs to be compliant so that the contraction of the SMA is not impaired. The bachelor thesis will comprise the following steps:

  • Literature review of publications dealing with SMA actuators under water
  • Analysis of applicable coating materials and related manufacturing techniques
  • Development of an analytical model predicting the heat transfer of coated SMA wires working under water
  • Realization of an experimental setup for operation of an SMA wire under water.
  • Comparison of experimental results to model prediction

For more information, please contact

Prof. Dr.-Ing. Arif Kazi

Faculty of Optics and Mechatronics

Aalen University of Applied Sciences

Phone: +49-7361-576-3341

Email: Arif.Kazi@hs-aalen.de

Hauptbetreuer: Prof. Dr. Markus Glaser


Konzeptionierung und Durchführung von Zuverlässigkeitsuntersuchungen.

Entwicklung von Testaufbauten.

Hauptbetreuer: Prof. Dr.-Ing. Stefan Hörmann


Das für den Carolo Cup entwickelte autonome Modellfahrzeug soll mit neuer Sensorik und einer flexibleren Beleuchtung ausgestattet werden. Im Rahmen des mechatronischen Projektes sollen für die Anwendung geeignete Sensoren und LEDs ausgewählt und auf Ihre Funktion geprüft werden. Der Funktionstest soll mit Hilfe eines prototypischen Aufbaus durchgeführt werden. Zur Ansteuerung der Sensoren und LEDs sind geeignete Treiber auf der Zielplattform zu adaptieren/entwickeln. Die Integration in das Fahrzeug soll mit einer seriellen Schnittstelle erfolgen. Die dafür erforderliche Software ist sowohl auf der Seite des Steuer-PCs als auch auf Seite des µControllers zu implementieren.

Hauptbetreuer: Prof. Dr.-Ing. Stefan Hörmann


Für die elektrische Versorgung von mobilen Roboterplattformen soll ein Batteriemanagementsystem entwickelt werden. Das System soll es ermöglichen mobile Roboterplattformen wahlweise mit bis zu zwei Akkus oder einem Netzteil zu betreiben. Bei der Speisung des Roboters mit zwei Akkus soll zunächst nur ein Akku entladen werden. Ist dieser leer, soll automatisch auf den zweiten Akku gewechselt werden. Akkus, die nicht entladen werden, sollen im laufenden Betrieb ausgewechselt werden können. Folgende Informationen sollen an den Steuer-Computer des Robotersystems übertragen werden: Aktive Quelle, momentaner Stromverbrauch, noch im Akku enthaltene Ladung, Zellenspannungen, Akku ID. Damit insbesondere die in den Akkus enthaltene Ladung überwacht werden kann, müssen die Akkus mit einem Speichermodul ausgestattet werden. Mit einem Ladeadapter soll der Ladevorgang überwacht werden und im Speichermodul protokolliert werden.

Hauptbetreuer: Prof. Dr. Markus Glaser

Schlagworte: Li-Ionen Zuverlässigkeit Big data


Der Einzug von Big Data in die Mechatronik erfordert neue Datenablage Modelle.

Speziell für die Anwendung von Machine Learning ist es wichtig gesammelte Daten sinnvoll abzulegen.

Dies ermöglicht einen einfachen Zugriff auf die Daten zur Verwendung als Testdaten und Verifikationsdaten für die Modell Generierung.


Die Ziel der Bachelorarbeit sind

  • die Analyse der generierten Daten

  • die Entwicklung eines Ablagemodells der Daten

  • die Speicherung der Daten in einer Datenbank

  • die Generierung der Datenbank in einer Cloud

Hauptbetreuer: Prof. Dr. Arif Kazi

Bearbeitungszeit ab 01.03.2019 bis 31.07.2019


Ein Schwerpunkt der Vorlesung "Antriebstechnik" sind "bürstenlose" elektrische Antriebe, deren Drehfeld elektronisch gesteuert wird. In einem zukünftigen Laborversuch sollen die Studierenden die Steuerungslogik zunächst an einem Simulationsmodell entwickeln und anschließend an einem realen Elektromotor praktisch umsetzen.

Ziel des Projektes ist es, die Grundlagen für den geplanten Laborversuch zu erarbeiten. Die Hardware-Grundlage sollen dabei kostengünstige handelsübliche Elektronik-Komponenten (z.B. Arduino mit Motor-Shield) bilden, damit der Versuchsaufbau einfach vervielfältigt werden kann. Das Projekt soll eine Umgebung bereitstellen, in der die zukünftigen Studierenden die Logik einer Block- bzw. Sinuskommutierung implementieren können, ohne dabei zu viel Zeit auf eine Einarbeitung in die Programmierung zu investieren. Die Programmierung des Arduino aus Matlab heraus wäre hier ein vielversprechender Ansatz.

Hauptbetreuer: Prof. Dr.-Ing. Jürgen Baur, Zweitbetreuer: Prof. Dr.-Ing. Fabian Holzwarth

Bearbeitungszeit ab 07.10.2019 bis 29.02.2020

Schlagworte: media:Antriebstechnik Robotik


Für einen Pedelec-Prüfstand soll ein humanoider Roboter entwickelt werden. Die Antriebssteuerung und Regelung soll mit Raspberry Pi4 Plattformen und Matlab-Simulink deployment realisiert werden.

Das Projekt eignet sich für 3-4 Personen im Projektteam. Für dieses Projekt steht die Antriebstechnik sowie mechanische Konstruktion und Steuerungstechnik mit Matlab Stateflow im Mittelpunkt.

Hauptbetreuer: Prof. Dr.-Ing. Jürgen Baur, Zweitbetreuer: Prof. Dr.-Ing. Fabian Holzwarth

Bearbeitungszeit ab 07.10.2019 bis 29.02.2020

Schlagworte: Elektromobilität media:Antriebstechnik VR/AR


Für einen Pedelec-Prüfstand soll durch eine "virtuelle Landschaft" ergänzt werden. Dazu gibt es bereits einen Funktionsprototypen mit dem SW-Tool "Unity" welches nun in diesem Projekt

durch weitere Funktionen ergänzt werden soll. Zudem soll für die Belastungssteuerung des Pedelecs eine Drehmomentregelung für den EC-Motor und der VESC-Plattform implementiert werden.

Auch müssen einige mechanische Verbesserungen u.a. Führungen, Halterungen und eine 3M safetywalk Matte durchgeführt werden.

Das Projekt eignet sich für 2-3 Personen im Projektteam. Für dieses Projekt steht VR/AR, die Antriebstechnik sowie mechanische Konstruktion im Mittelpunkt.

Mehr anzeigen

Suche